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Abstract  

The dramatic expansion in the global manufacturing market has created a 

demand for small and medium enterprise (SME) to apply the advanced 

manufacturing technology (AMT). The flexible manufacturing system 

(FMS) is considered as a highly competitive manufacturing strategy to 

ensure the success of the enterprises in the developing countries. The 

implementation of FMS, however, is an intractable task that requires 

complete integration of numerous components from various vendors. This 

paper presents a multi-objective production planning model for selecting 

the most suitable combination of machines and operations in machining 

processes to simultaneously minimize the system unbalance, makespan 

(MK) and total flow time. The proposed model considered the capacity of 

machines, tool magazines, batch sizes, processing time and the time taken 

to transport machining parts. Moreover, it also considered the different 

allocation of each part of batch into various machines. The principle of 

biogeography-based optimization (BBO) is adapted to explore the 

possibilities of attaining feasible solutions for a formulated problem. The 

most appropriate solutions in selecting the machine and operation 

allocation were determined based on non-dominated sorting BBO 

procedure (NSBBO) and validated by FlexSim simulation environment. The 

obtained results highlighted the practical applicability in the 

implementation of FMS. 
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Introduction 

The globalization process, improving the product life cycles, satisfying the 

complex customer demands, and increase in the labor cost has motivated 

manufacturers to be more innovative, responsive, adaptive and flexible. 

Advanced manufacturing technology (AMT) has a potential to be 

implemented in small & medium enterprises (SME) to maintain 

productivity. Production planning is the heart of smart management in 

SMEs for implementation of production systems with desired production 

goals (minimizing average lateness, minimizing the makespan (MK), 

maximizing utilization, minimizing work-in-progress and setup time, 

minimizing tardiness and flow time). The batch size has ever reduced, and 

the typical customer demands on flexibility have made the Flexible 

Manufacturing System (FMS) become a competitive production strategy 

of the late twentieth century (Udhayakumar & Kumanan, 2010).  FMS has 

become an important element in the success of manufacturing enterprises 

in the last decade (Candan & Yazgan, 2015). FMS is an innovative 

manufacturing strategy that has generated attention to be implemented 

in SMEs. FMS, which is an automated manufacturing system with job shop 

flexibility and flow shop efficiency, has the benefits of high machine 

utilization, requiring fewer machines thus reducing floor space utilization, 

ability of responding to changeability, ease of reconfiguration and agility, 

reduced inventory requirements, less labor-intensive, and opportunity for 

automated production (Groover, 2016). Moreover, the integration of 

manufacturing methods and technologies caused the FMS to obtain other 

advantages such as reduction of work-in progress and cost, minimized 

setup time, minimized flow time and idle time for resources, minimized 

changeover time, minimized material handling time, shorten lead times, 

simplification of manufacturing, reduced floor space utilization, improved 

quality and market responses, etc. (Udhayakumar & Kumanan, 2010). 

FMS is an effective manufacturing unit that is expensive, thus managing 

the system is extremely important to achieve the desired performance of 

utilization and reducing the risk of investment (Abazari, Solimanpur, & 

Sattari, 2012). FMS is a profound approach to attain significant benefits 

for manufacturing economies. Thus, the formation of FMS is a step 

towards flexibility, shifting to quick response in producing high quality 

parts at low cost and satisfying the customer's demand (Sujono & 

Lashkari, 2007). In particular, production planning related to the 

production planning problem should be the first-key to be considered 

when implementing the FMS in practice. Machine selection and 

production planning strongly affect the system’s efficiency and 

productivity (Mahmudy, Marian, & Luong, 2013). Due to the high 

investment required, higher resource utilization must be achieved, and 

this matter can be addressed by establishing a good production planning 

http://doi.org/10.31273/eirj.v7i1.288


Exchanges: The Interdisciplinary Research Journal 

 

39  Nguyen, et al., Exchanges 2019 7(1), pp. 37-64 
 

to increase productivity and flexibility (Mahmudy et al., 2013). The 

decisions on production planning must be implemented before the start 

of the actual production (Chen & Ho, 2005). Multiple objective production 

planning is one of the most crucial aspects of the desired effective 

utilization with the aim of reducing the manufacturing costs at least by 10-

30% and material handling costs at least by 10-70% (Abazari et al., 2012). 

Literature Review 

Production planning problems involve the issues of selecting the machines 

and operations to produce many different part types within technological 

and capacity constraints. The production performance is no longer 

determined by manufacturing cost as other factors (quality, flexibility, 

delivery, and customer services) play a more important role in the success 

of enterprises. The characteristics of flexibility, efficiency, and quality are 

vital to improve the manufacturing systems. The FMS is an automated 

manufacturing system that has the flexibility of a job shop while retaining 

the efficiency of a flow shop to produce many part types with different 

small-to-medium size batches. The duality of efficiency and flexibility 

complicates the management of FMS and this is reflected in the planning 

as well as scheduling (N. Kumar & Shanker, 2000; M. Tiwari, Rika, Rthi, 

Jaggi, & Mukhopadhyay, 1997). For production facilities, an FMS 

comprises many machines, a material handling system and a central 

storage system. Use of FMSs lead to: (1) increase in product variety, (2) 

shorten product development cycle, (3) increase flexibility and 

adaptability to the changes in the market, (4) improve the utilization of 

resources, (5) increase productivity and reduce costs of goods and 

services, (6) reduce setup time and work-in-progress (WIP), (7) create 

rapid cell for new product family by reprogramming simply FMS (Gamila 

& Motavalli, 2003). FMS is being implemented in developing countries due 

to its flexibility and possibility to increase efficiency up to 90% (Vidyarthi 

& Tiwari, 2001). Production planning for FMS is more difficult than in job 

shops. This is because: (1) the machine is more flexible and able to process 

many operations, (2) several part types can be processed simultaneously, 

and (3) each part type may have more than one production route. In 

particular, sequencing of part types, operation allocation, and reallocation 

of part types are the three main concerns (Vidyarthi & Tiwari, 2001). 

Solution for production planning may affect the optimal operation of FMS.  

To solve the production planning, many researchers have developed the 

different methods which comprise of mathematical modeling, simulation, 

evolutionary computation, and artificial intelligence. For instance, (Tiwari 

et al. 1997) presented a heuristic method based on the ‘shortest 

processing time’ (SPT) sequencing and Petri Nets for machine loading 

problem (MLP) in FMS with the aims of decreasing the system unbalance 
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(SU) and maximizing throughput. (Kumar, Singh, and Tiwari, 2004) also 

proposed a fuzzy-based method with three main constituents, involving 

the determination of job sequencing, allocation of operation and 

reallocation of jobs. Kumar and Shanker (2000) applied the GA for 

selecting the part type and loading machine in FMS. Atmani and Lashkari 

(1998) built a linear integer programming model of selecting machine and 

allocating operation in FMS to minimize the total production costs. 

Mukhopadhyay, Singh & Srivastava (1998) considered the MLP in FMS 

using simulated annealing algorithm (SA) to minimize the system 

imbalance. Biswas and Mahapatra (2008) presented the modified particle 

swarm optimization (PSO) to minimize SU while satisfying the constraints 

of processing time and tool slots. Vidyarthi and Tiwari (2001) developed a 

heuristic solution based on fuzzy sets for MLP with minimizing the system 

unbalance and maximizing throughput. With the same objectives, Sarma, 

Kant, Rai, & Tiwari (2002) developed a framework with a mixed integer 

programming (MIP) model based on the fixed part sequencing rules and 

Tabu Search (TS) algorithm. Swarnkar and Tiwari (2004) used a hybrid 

approach of TS and SA for solving the MIP model. Kumar, Tiwari, Shankar 

& Baveja (2006) presented the constraint-based GA to solve a complicated 

variety of variables and constraints in MLP. Their work is extended by 

Tiwari, Kumar & Shankar (2006) using an approach based on constraint-

based fast Simulated Annealing (SA). Prakash, Khilwani, Tiwari & Cohen 

(2008) developed a more effective immune algorithm (IA) with decreased 

memory demands and computation complexity for selecting the job and 

allocating the operations in FMS. Prakash, Tiwari and Shankar (2008) 

proposed an adaptive hierarchical ant colony algorithm for resolving the 

traditional MLP in FMS. Mandal, Pandey and Tiwari (2010) discussed a 

mathematical model for the MLP in FMS in the occurrence of technological 

constraints using a hybrid approach of GA and SA. Kumar, Murthy & 

Chandrashekara (2012) continued solving the MLP using GA and PSO. 

Prakash, Shukla, Shankar and Tiwari (2007) provided the approaches of 

artificial intelligence (AI) for solving the MLP of FMS. Besides, Goswami and 

Tiwari (2006) also presented an approach based on reallocation to handle 

the MLP.  

Gamila and Motavalli (2003) analyzed the production planning in FMS and 

solved the loading and scheduling of parts and tools. Nagarjuna, Mahesh 

and Rajagopal (2006) developed the heuristic method for MLP in random 

type FMS based on multistage programming to minimize system 

unbalance (SU). Arikan and Erol, (2006) developed meta-heuristic based 

on SA and TS for solving the part selection and tool allocation to determine 

the minimum number of parts in a batch. Moreover, their work is also 

extended by themselves (Arıkan & Erol, 2012) to minimize the system 

unbalance using a hybrid of SA TS. Goswami, Tiwari and Mukhopadhyay 
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(2008) discussed the integrated solution to address tool-part grouping, 

allocation and scheduling of jobs in FMS. Rai, Kameshwaran and Tiwari 

(2002) presented the model of MLP in FMS to minimize the total cost using 

a fuzzy goal programming. Then, the proposed fuzzy goal programming 

model is solved with ant colony optimization by Chan and Swarnkar (2006), 

a quick converging simulated annealing-based solution by Mishra, 

Prakash, Tiwari, and Lashkari (2006), and an artificial immune system (AIS) 

by Chan, Swarnkar and Tiwari (2005). 

Tiwari, Saha and Mukhopadhyay (2007) combined the job sequencing and 

MLP in FMS using two heuristics. Yang and Wu (2002) proposed the MIP 

model to integrate part type selection and MLP using GA. Mandal, Pandey 

and Tiwari (2010) solved the traditional production planning with 

consideration of machine breakdown in predetermined and stochastic 

cases of dynamic manufacturing environment. Koşucuoğlu and Bilge 

(2012) solved the FMS loading with consideration of material handling 

system. Guldogan (2011) proposed an integrated model of expert system 

based on knowledge engineering and the GA for MCDM in solving the MLP. 

Jahromi and Tavakkoli-Moghddam (2012) proposed a dynamic model of 

machine and operation selection problem with consideration of the 

movement policies of part and cutting tool in FMS. Basnet (2012) proposed 

a hybrid GA for making decisions to allocate the machines and cutting tools 

to different jobs in FMS.  Abazari, Solimanpur and Sattari (2012) proposed 

a mixed linear programming model for job selection and allocation of 

operation in FMS to obtain the maximum utilization and profitability using 

GA. Chen and Ho, (2005) proposed a novel technique to production 

planning in FMS based on an efficient multi-objective GA (EMOGA). 

Das, Baki, and Li (2009) solved the production planning of FMS involving 

the allocation of cutting tools, part type grouping, and production planning 

using LINGO. Shin, Park, and Kim (2011) presented a multi-objective 

symbiotic evolutionary algorithm to solve the multi-objective process 

planning in FMS. Soolaki and Zarrinpoor (2014) proposed a new model of 

assignment problem in flexible manufacturing system. Many objectives 

are used in solving the MLP such as production cost (comprises of 

machining costs, traveling costs, setup costs, loading and unloading time, 

and storage time), SU, TH, makespan, movement of cutting tools, part 

types, AGV (Automated Guide Vehicle), etc. The system unbalance is 

correlated with the throughput. Minimization of SU will cause the 

throughput to be in maximum value. However, few other objectives that 

have gathered only a little attention when considering MLP: makespan and 

total flow time when to consider the MLP. Therefore, it is clear that the 

MLP needs to be paid more attention to and more exploration needed to 

be done enable it to be applied in the real industry, especially in 

manufacturing SMEs. In this study, the proposed approach of combination 
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of biogeography based optimization (BBO) and non-dominated sorting is 

presented for multi-objective production planning problem in FMS. 

Mathematical Model 

FMS with limited numbers of CNC machines (usually less than 25) is the 

key component to the implementation of manufacturing systems. The 

structure of FMS consists of CNC machine tools (with the automatic tool 

magazines), robot for loading/unloading parts and a conveyor handling 

system. The loop layout ensures the parts to flow smoothly to the machine 

position. After the part is machined and became the finished product, it is 

unloaded from the machine and moved to the drop-off position by loop 

conveyor. Figure 1 shows the structure of proposed FMS. 

MC1

B1

MC2

B2

MC4

B4

MC3

B3

L/
U

Completed 
parts

Starting 
workpecies

L1 L2 L3

L5L6L7L8

L9
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B: Buffer
MC: Machine
L/U: loading/unloading
L: distance between 
machines

 

Figure 1. Flexible Manufacturing System 

The production planning problem is identified as how the parts are to be 

assigned into the various CNC machines to obtain the manufacturing goals 

with the technological constraints and machine capacity addressed. The 

balancing of workload or minimizing system unbalance has been popular 

in conventional systems and FMS, which is the attempt to allocate equal 

total processing times to each CNC machine. The reason is that if the 

workload is uniform, congestion will be reduced and the performance will 

be improved. So this objective ensures that all machines in the system 

complete the desired operations more or less at the same time. Therefore, 

minimization of system unbalance is very important in reconfiguring the 

system to produce a new batch of part types (Stecke & Solberg, 1981).  
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Minimization of transportation time as well as minimization of the number 

of part type movements will make the workload unbalanced with the 

longer queue at the heavily used machines. If the transportation time in 

the system is larger compared to the processing time of operations, this 

objective is then worth considering. The managers always look for the way 

to assign several consecutive operations on a machine with the aim of 

balancing.  

The purpose of this paper is to explore the most suitable allocation of 

operations into machines to satisfy the manufacturing goals, which are 

presented as the objective functions: minimization of (1) system 

unbalance, (2) makespan and (3) total flow time. 

The below assumptions are used to analyze the FMS planning problem. A 

part of the assumptions is adapted from Atmani and Lashkari (1998) and 

Mukhopadhyay (et al., 1998): 

-The type of machines and the number of machines in FMC are pre-

determined. All the machining parts are processed in the same 

manufacturing facility. 

-The raw materials and cutting tool prepared for processing are 

available when needed. 

-All of machines and part types are simultaneously available. A part 

type comprises of several operations. A number of parts are produced 

simultaneously in batches. Parts can be selected and processed in one 

or more machines. 

-A machine can perform multiple functions of milling, drilling, boring, 

turning, reaming, etc. and an operation can be processed on potential 

machines equipped with the required tools. 

-The part processed on responding machines must be completed 

before continuing another part.  

-All data on the process plan are available. 

-Loading, unloading and setup times are included in processing time or 

negligible. 

-The tool magazine slots are not allowed to be shared and to duplicate 

the cutting tools. 

-All the design, structure of the layout and setup problems in FMS has 

been pre-determined. 

-Real-time problems involving congestions, traffic control, breakdown, 

electricity, scraps, rework, failure of equipment, the shortages of 

materials and maintenance are ignored. 
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Notation 

The following is a list of the subscripts, variables and parameters used in the 

model. 

Subscripts 

1,2,...,=i N , part type index in the FMS, where N is the total number of part type 

processed in FMS. 

' 1,..., ( )=i B i : index of the 'i -th part in batch size of the part type i . 

1,2,..., ( )=j J i , index for machining operations in the FMC, where ( )J i is the total 

number of operations of part i , 1,2,...,=i N . 

, , ' 1,2,...,=k l l K , index for CNC machines, where K is the total number of CNC 

machines in the FMC. 

' ( , ', )=ii jK K i i j : set of potential optional CNC machines for processing an 

operation j of the 'i -th part in batch size of part type i , where

1,2,..., ( ); ' 1,2,..., ( );= =j J i i B i 1,2,...,=i N . For instance, 221 {1,3}=K shows that the 

first operation of the second part of part type 2 can be processed on the CNC 

machine 1 or machine 3. 

Parameters 

( )B i : Batch size of part i , 1,2,...,=i N . 

H: length of the planning horizon (H = 8 hours). 

kT : the number of tool slots available on machine k , 1,2,...,=k K . 

'ii jkp : processing time of operation j of the 'i -th part in batch size of part type i

on machine k , where 1,2,..., ( ); ' 1,2,..., ( );= =j J i i B i 1,2,...,=i N . 

'ii jkts : number of tool slots required for processing operation j of the 'i -th part of 

part type i on machine k, where 1,2,..., ( ); ' 1,2,..., ( );= =j J i i B i 1,2,...,=i N ; 

'ii klt : Transportation/traveling time from machine k to machine l  for the 'i -th 

part of part type i, 1,2,..., ; ' 1,2,..., ( );= =i N i B i , 1,2,...,=k l K . 

'ii kLT : Loading time of the 'i -th part of part type i from the loading station to 

machine k. 

' 'ii lULT : Unloading time of the 'i -th part of part type i from machine 'l to 

unloading station. 
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Decision Variables 

'

’f operation  of part of 

   part type  is assigned to machine 

1,

0,otherwise

−


= 



ii

t

jk

hi j i

i kx

 

'

1,  if '-  part of part type 

    is selected for processing

0,  otherwise




= 



ii

i th

x i

 

'k

1,      if '-  part of part type  is loaded and 

       assigned to machine  from loading station

0,     otherwise




= 



ii

i th i

x k

  

'l'

1,     if '-  part of part type  is unloaded and 

       returned to unloading station from machine '

0,     otherwise




= 



ii

i th i

x l

 

' ' ( 1)

1,      if operation  of part ( , ') 

completed on machine k 

        is conveyed to machine  to 

continue operation ( 1)

0,otherwise

+





 = 
 +



ii jk ii j l

j i i

x x l

j

 

Three objectives are considered to model of FMS production planning such 

as the system unbalance, makespan and the total flow time (TFT). A mixed 

integer linear programming (MILP) model is presented for determining the 

suitable solution of production plan of N part types over a limited pool of 

K CNC machines in the FMS. Due to the limitation of the operating time in 

machines, so the machines are considered in the status of under-utilized 

(unused capacity of the machine) or over-utilized (the overload of the 

machine). Most of researchers usually neglect the transporting time 

(Abazari et al., 2012; Arıkan & Erol, 2012; V. M. Kumar et al., 2012; 

Prakash, Khilwani, et al., 2008; M. Tiwari et al., 2007). Moreover, they 

have not considered the allocation of each part in each batch size and so 

the all parts of part types have been assigned to the same machines. 

Therefore, in this research, the traveling time is used based on the 

conveyor system to contribute to the makespan and total flow time, and 

each part of the part type is considered to allocate to different machine in 

order to ensure the system balanced. 

-Minimization of the system unbalance: The balance of workload of 

machines is balancing the operating time on each machine in the system. 

It is extended to consider the different allocation for each part of part type 

to the different or same machines, adapted from (Abazari et al. 2012; 

Basnet, 2012): 
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' '

'

( ) ( )

1 1 11

 
= = ==

= −  
B i J iK N

ii jk ii jk
k i ji

Min SU H x p

 
(1) 

-Minimization of makespan: Makespan is the total time to complete 

processing all the part types.  

' ' ' '
'

' ' ' ' ' '

( )
'

( , )
1 1 1

( 1) '
1 1 1

 ( , ) max

            

= = =

+
= = =


=  +  +




+   +  



 

 

J iK K

ii k ii k ii jk ii jk
i i

k j k

K K K

ii kl ii jk ii j l ii l ii l
k l l

Max C i i x LT x p

t x x x ULT

 

(2) 

In particular,  

' '
ii k ii k
x LT : The loading time of part (i’, i) from loading station to machine k 

' '

( )

1 1= =


J i K

ii jk ii jk
j k

x p : The process time of part (i’,i) on machine k. 

' ' ' ( 1)
1 1

+
= =

 
K K

ii kl ii jk ii j l
k l

t x x : The traveling time of part (i’, i) from machine k to 

machine l for processing the next operation (j+1). 

' ' ''
1=


K

ii l ii l
l

x ULT : The unloading time of part (i’, i) from machine l to unloading 

station. 

-Minimization of the total flow time: The total flow time comprises the total 

processing time and the transportation/traveling time between machines for 

processing the parts in the system. 

' ' ' '

' '

' ' ' ' ' ' '

' ' '

B( ) ( ) ( )

1 1 1 1 11 1

( ) ( ) B( )

( 1)
1 1 1 1 11 1 1

 

+

= = = = == =

+
= = = = == = =

=  +  +

  + 

 

 

i B i J iN K N K

ii k ii k ii jk ii jk
i k i j ki i

B i J i iN K K N K

ii kl ii jk ii j l ii l ii l
i j k l ii i l

Min TFT x LT x p

t x x x ULT

 

(3) 

Constraints 

The decision variables are binary (0-1 integers): 

' '

0 0
   and 

1 1

 
= = 
 

ii jk iix x

 
(4) 

The magazines of CNC machines must include enough tool slots for 

operation’s assignment: 
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( ) ( )

' '

1 ' 1 1= = =

 
B i J iN

ii jk ii jk k

i i j

x ts T

 
(5) 

Once a part type is chosen, each operation of part type can be processed 

just by one machine. If a part type is not chosen, no CNC machine in FMS 

is used to produce any operation.  

' '

( , ', )

= ii jk ii

k K i i j

x x

 
(6) 

Research Method 

Biogeography is a field that explores the geographical distribution of 

biological organisms. In the 1960s, the distribution of organisms was 

discovered and modeled based on the mathematical equations that 

describe the migration of species from one island to another in the nature. 

The migration of species shows in existence that in living environment, 

that is how new species survive and develop. An island is called a habitat 

when it is insulated geographically to other islands. The geographical areas 

suitable for the residences of the biological species are described to have 

high HSI (habitat suitability index). The features in determining the HSI 

comprise the diversity of vegetation and topographic features, rainfall, 

temperature and land region. The decision variables that specialize the 

habitability are called SIVs (suitability index variables), which can be 

independent variables of the habitats, while HSI can be the dependent 

variable. The habitats which have a higher HSI will have a larger number of 

species, whereas the ones lower HSI has a smaller number of species. The 

high-HSI habitats include many species emigrating to the neighboring 

habitats. The rate of species immigration in the high-HSI habitats is low 

due to saturation of species. Thus, in the high-HSI habitats, the rate of 

emigration is high to create a better condition for species emigrating to 

the nearby habitats. The rate of immigration is high in the low-HSI habitats 

due to the sparseness of the species in the populations. Since the 

suitability of a habitat is directly the diversity of biology, the HSI is higher 

when the habitat has new species immigrants. Meanwhile the low-HSI 

habitats which have a low number of species that can go extinct, will open 

many opportunities for additional immigrations. Due to this, low-HSI 

habitats are more dynamic and flexible in the species distribution than the 

high-HSI habitats. A good solution is similar to a high-HSI island, and poor 

solution can be represented by a low-HSI island. The high-HSI solutions 

oppose the change more than the low-HSI solutions and share their 
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features. So, the poor solutions can admit many new features from better 

solutions. The replacement of new features to the low-HSI solution will 

make the quality of these solutions higher (Simon, 2008, 2013). 

BBO is a nature inspired algorithm and a novel approach to solve NP-hard 

problems, similar to the genetic algorithms (Rahmati & Zandieh, 2012). In 

the BBO, the fitness function is only utilized in determining the migration 

rates (Paslar et al., 2015). In recent years, BBO had emerged to bring 

potential applications in the manufacturing systems. It has been used to 

handle the scheduling problem of flexible manufacturing system (Berghida 

& Boukra, 2015; Paslar et al., 2015; Rahmati & Zandieh, 2012; Xiaohua 

Wang & Duan, 2014). The proposed approach for production planning in 

FMS is described in Figure 2 with the steps as follows. 

Step 1:  Initial population: Initialize feasible solution. 

Step 2: Duplicates: to check and estimate the individual duplications in 

population. 

Step 3:  Evaluate the objective function with the constraints. 

Step 4:  Operators: migration and mutation operators. 

Step 5:  Sort: ranks of individuals in a population based on non-

dominated sorting and crowding distance. 

The size of new population is increased twice and it will undergo selective 

mechanism based on non-dominated sorting and crowding distance 

conducted by Deb, Pratap, Agarwal, and Meyarivan (2002) to form an 

entirely new population with original size. This new population will 

continue to cycle until the solutions satisfy the requirements or 

terminated conditions obtained. Figure 2 presents the steps of BBO. We 

firstly create the initial population consists of feasible solutions. Then, the 

operators of migration and mutation are applied in populations to create 

a new population that consists of improved individuals. To take advantage 

of the best individuals in the new and old populations, a combined 

population is created and includes all the individuals. Therefore, the size 

of new population is increased twofold, and it will undergo selective 

mechanism based on non-dominated sorting and crowding distance to 

form an entirely new population with original size. This new population 

will continue the cycle until the solutions satisfy the requirements or 

terminated conditions obtained. 
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Rank based Non-dominated 
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Figure 2. The proposed approach for production planning in FMC 

For starting the algorithm, an initial population of solutions is generated. 

These solutions are presented by the structure of habitats. The approach 

is used to create the initial population based on the methods presented by 

Rahmati and Zandieh (2012), Paslar (et al. 2015) and Xiaojuan Wang, Gao, 

Zhang, and Shao (2010). In their method, the two machines are chosen 

from the set of potential machines for each operation. For the aim of 

machines selection, a random number is generated within the interval [0, 

1], if this random number is less than 0.8, a machine with a shorter 

processing time is prior to select; otherwise, a machine with longer 

processing time is selected. 

no 

yes 

no 

yes 
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3 4 ... 3 2 4 ... 2 1 3 ... 2 1 ...

Machine assignment vector

Part type 1 Part type 2 Part type 3 Part type 4 Part type 5

1 1 4 3 ...

The 1st part of PT 1 The 1st part of PT 2 The 1st part of PT 3 The 1st part of PT 51st part of PT 4

 

Figure 3. The presentation of habitat, adapted from (Xiaojuan Wang et al., 2010; 

Rahmati & Zandieh, 2012; and Paslar et al., 2015) 

The presentation of the structure of the habitat is similar to the structure 

of the individuals in genetic algorithms. The structure of the habitat in this 

approach is shown as in Figure 3. This representation consists of vector o 

assigning the suitable operations to the potential machines in the system. 

It means that the suitable machines are assigned to the corresponding 

operations of the first part of part types 1, 2, 3, 4, and 5 needed to be 

processed in the system. From the machine assignment vector, we can 

read the suitable solution as [Part type 1: (O11, M1); (O12, M3); (O13, M4)…; 

Part type 2: (O21, M3); (O22, M2); (O23, M4)…; Part type 3: (O31, M2); (O32, 

M1); (O33, M3)…; Part type 4: (O41, M2); (O42, M1)…; and Part type 5: (O51, 

M1); (O52, M4); (O53, M3)…]. 

Migration Operator 

After choosing the immigrating and emigrating habitats, the operators of 

migration are completed based on the principles of the crossover operator 

in GA. Multi-point preservative crossover (MPX) used for the process of 

migrating the representation of the habitat. MPX are applied for the 

migration operators in the vectors of machine assignment as in Figure 4 

(Rahmati & Zandieh, 2012). The principles of MPX are implemented as 

follows Paslar (et al., 2015). 

Step 1: For the operator of MPX migration on machine assignment 

vector, we randomly generate a vector comprising of values 0 and 1. 

This vector has the same length with habitat size. The name of vector 

called Rand. 

Step 2: Direct copies (same positions) of IH to the MH at Rand = 0. 

Step 3: Direct copies (same positions) of EH to the MH at Rand = 1. 

Mutation Operator 

It is used to maintain and increase diversity of solutions by modifying one 

or more chosen SIV randomly. The principle of mutation operator is 

illustrated in Figure 5. 
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Random vector

Immigrating Habitat IH

Modified Habitat MH

Emigrating Habitat EH

3 4 ... 3 2 4 ... 2 1 3 ... 2 1 ...

Machine assignment vector

1 1 4 3 ...

2 4 ... 3 2 1 ... 3 2 3 ... 1 1 ...1 3 4 4 ...

2 3 ... 4 4 1 ... 3 2 3 ... 1 2 ...1 3 1 4 ...

1 0 ... 0 0 1 ... 1 1 0 ... 1 0 ...0 1 0 1 ...

  

Figure 4. Migration operator of MPX 

Step 1: Choose the machine assignment vector of the habitat SIV. 

Step 2: Randomly select two positions, and change each number with 

another machine from a set of alternatives for these two operations. 

Machine assignment vector

Immigrating Habitat IH

Modified Habitat MH

3 4 ... 3 2 4 ... 2 1 3 ... 2 1 ...1 1 4 3 ...

2 2 ... 3 2 1 ... 3 2 3 ... 1 4 ...1 3 4 4 ...

 

Figure 5. Mutation operator of vectors of machine assignment 

Case Study 

The FMS consists of four dummy machines, robot for loading/unloading 

and conveyor system with one shortcut conveyor to transfer the part type. 

Finding a realistic production plan is extremely difficult because it involves 

confidential business technology. The factors of processing time and 

traveling time are not easily accessible. Production companies usually will 

not stop the production line to give way to test and study because of the 

economics and competitiveness. Therefore, the real process plan for FMS 

was adapted from Mukhopadhyay, Midha, and Krishna (1992) and a new 

data of transportation time is added to build a model of FMC in the 

practice at the manufacturing SMEs. The traveling time is designed based 

on the length and speed of conveyor system. The database of traveling 

time between machines and loading/unloading stations is shown as in 

Table 1. 

To examine the applicability of the proposed NSBBO approach, we 

developed a computational program based on MATLAB software and run 

on Intel® core™ i5-2410M 2.3GHz, 4GB DDR3 memory with Window 7. The 

parameters of BBO method are set in this study after checking a number 

of experimentations: 

The habitat size (it means population size): 50; Maximum migration and 

immigration rate of each habitat: E = I = 1; Mutation probability mmax: 0.01 

and Terminal criteria: the number of iterations is 1000. 
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  M1 M2 M3 M4 

L/UL 2 4 8 10 

CNC machine 1 - 2 6 8 

CNC machine 2 10 - 4 6 

CNC machine 3 6 8 - 3 

CNC machine 4 4 4 10 - 

Table 1. Traveling time between machines in FMS (min). 

The number of part type is increased, so the complexity of the problem 

will be increased. The FMS is considered with four CNC machines to 

produce the number of part types with different batch sizes. For instance, 

the process plan consists of 8 part types in Table 2. The batch size for each 

part type is 8, 9, 13, 16, 9, 10, 12 and 13, respectively. The number of 

optional operation is large, so the production process becomes more 

flexible. It means that the opportunity for combining the machines and 

operations is considerable. Table 2 shows the best solution for selecting 

the most appropriate combination of machines and operations in FMS. 

Figure 6 shows all the non-dominated sorting solutions from a run of 

NSBBO until all the batch sizes are completed with the process. Figure 7 

presents the relationship between makespan and total flow time as a 

Pareto front. 

 

Figure 6. The non-dominated sorting solutions from a run of NSBBO with three 

objectives 
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Figure 7. Relationship between makespan and total flow time. 

(a) all the non-dominated sorting solutions 

 (b) potential non-dominated sorting solutions 

Part type Batch size Part Type in batch O1 O2 O3 

1 8 1,2,…,8 3 0 0 

2 9 
1, 3, 4, 5, 7, 9 4 4 2 

2, 6, 8 1 4 2 

3 13 

1,2,3,4,5,6,7 1 3 0 

8 4 3 0 

9, 10, 11, 12, 13 1 3 0 

4 6 1, 2, 3, 4, 5, 6 3 4 0 

5 9 
1 2 2 0 

2, 3, 4, 5, 6, 7, 8, 9 3 2 0 

6 10 
1, 2, 3, 4, 6, 7, 8, 9 4 2 2 

5, 10 4 3 2 

7 12 
1, 3, 4, 5, 6, 8, 11, 12 3 3 4 

2, 7, 9, 10 3 2 4 

8 13 

1, 2, 6, 7, 8, 9, 10, 11, 

12, 13 1 2 1 

3, 4 2 2 1 

5 2 1 1 

System Unbalance: 1793; Makespan: 978; Total Flow Time: 50828 

Table 2. The most suitable combination of machine and operation in FMS for the case 

study. 

The optional operations of part type are assigned to obtain the optimal 

objectives of system unbalance, makespan and total flow time. For 

example, the part type 2 is assigned according to sequences of (4 – 4 – 2) 

and (1 - 4 – 2). In particular, the operations 1, 2 and 3 of first part of part 

type 2 in batch size are allocated to CNC machines 4, 4 and 2. However, 

the operations 1, 2 and 3 of the second part of part type 2 in batch size are 
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assigned to CNC machines 1, 4 and 2. Clearly, these machine assignments 

are different to obtain the system unbalance of each machine. Similarity, 

the other operations of other part types can be interpreted. The proposed 

model of multi-objective production planning in FMS is solved using the 

non-dominated sorting BBO procedure. We have chosen three objectives 

of minimizing SU, makespan and total flow time. Minimizing the total flow 

time will make the workload unbalanced with the larger queues closed to 

the most heavily used machines. It is important to realize that two of three 

objectives are dependent with each other and not conflicting together. 

Thus, a surface of Pareto frontier is difficult to demonstrate in this case. 

Besides, the results obtained by the proposed NSBBO are compared with 

those of four algorithms available in the literature (see Table 3). 

No Part B&B Prakash, 
Khilwani,  
et al. (2008) 

Nagarjuna  
et al. (2006) 

Mukhopad 
hyay et al.  
(1992) 

Abazari et 
al. (2012) 

NSBBO 

1 8 81 318 122 122 81 1793 

2 6 202 524 202 202 202 316 

3 5 72 312 130 286 72 156 

4 5 819 819 819 819 819 819 

5 6 133 536 219 364 133 289 

6 6 178 518 265 265 178 236 

7 6 147 477 183 147 147 99 

8 7 111 677 288 459 111 1246 

9 7 309 333 309 315 309 309 

10 6 184 272 271 320 184 221 

Table 3. Comparison of the results obtained on the system unbalance by different 

methods. 

As seen in the Table 3, the proposed NSBBO for multiple objective 

production planning for FMS has obtained the globally optimal solutions 

of all the problems and its performance is considerable potential when 

compared with other existing methods in the literature. The results of 

NSBBO were considerably better than those of Prakash (et al., 2008) and 

Mukhopadhyay (et al., 1992) and competitive when compared with results 

of Nagarjuna (et al., 2006). 

However, the result of NSBBO is acceptable when compared with one of 

Abazari (et al., 2012). Because NSBBO method considers the multiple 

objective solutions, so the best solution is identified based on the trade-

off or balance among the values of objectives (system unbalance, 

makespan and total flow time) and different from the best solution in 

single objective problem. Moreover, one more difference between results 

of NSBBO with other methods is considered of completion of the desired 
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batch sizes of FMS. As seen in Table 3, the system unbalance of FMS has 

been reported in the case of completing all the batch size of part types. 

Prakash (et al., 2008) Nagarjuna (et al., 2006), Mukhopadhyay (et al., 

1992) and Abazari (et al., 2012) have ignored the consideration of the 

completion of all the batch sizes of part types. Thus, the problem 1 and 

problem 8 have the very large values of system unbalance. It's easy to 

notice that makespan in this case is greater than 480 minutes, which 

describes the time of the first shift in a day. Therefore, it is essential to 

suggest that FMS had better continue operating the second shifts to 

complete all the part types with desired batch sizes. This is very convenient 

to assess the delivery time for the valued customers. 

To validate the results of the proposed production planning model of FMS 

from NSBBO, the simulation of FMS is implemented in FlexSim software to 

observe the performance and behavior of FMC. Table 4 shows the 

comparison of system unbalance, makespan and total flow time from 

NSBBO analytical and simulation experiments. We realized that the result 

of NSBBO was quite similar to results of FlexSim simulation. It means that 

FlexSim simulation of FMS is a powerful tool to validate the proposed 

model, and results of NSBBO are competitive and potential to explore the 

most appropriate process planning. 

 Case study 

Performance index Simulation  NSBBO Error 

System unbalance 1739.36 1793 3% 

Makespan 973.01 978 0.5% 

Total flow time 50560.01 50858 0.6% 

Table 4. The comparison of system unbalance, makespan and total flow time (min). 

In summary, simulation is used to evaluate the designed FMS in terms of 

productivity to produce the various part types with the corresponding 

batch sizes from customers' demand. From the results of the comparison 

between the two models of simulation and analytical non-dominated 

sorting BBO method, it's easy to realize that the proposed FMS model is 

able to complete the process planning and achieve batch size as required. 

Simulation model also shows the status of each CNC machine to improve 

the machine's utilization and evaluate the total performance of FMS. Due 

to the complexity of FMS, the adoption of an integrated approach on 

manufacturing goals to obtain the objectives of minimization of system 

unbalance, makespan and total flow time is possible. A feasible integrated 

solution approach NSBBO based on the biogeography based optimization 

and non-dominated sorting is proposed to generate the most suitable 

process plans in the context of manufacturing SMEs. The explored results 
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are verified based on the LINGO software. Thus, it is proved that the 

proposed NSBBO approach is general enough and applicable to determine 

the most suitable process plan for production planning decision in FMS. 

Conclusion 

Globalization of business processes motivates manufacturing SMEs to 

implement advanced manufacturing technology, especially in the 

implementation of the manufacturing systems to produce competitive 

products in the market. In this paper, we presented a multiple objective 

production planning model to determine the most suitable combination 

of machines and operations in FMS. The proposed model takes into 

account numerous real parameters comprising of the capacity of 

machines, tool magazines, processing time, transportation time, and 

allows the overloading status of machines. Moreover, this model 

considered the different allocation of each part of the batch into various 

machines in FMS. Besides, the consideration of multiple objectives of 

system unbalance, makespan and total flow time is significant in this 

model. The NSBBO approach was adapted to generate the most suitable 

process plans in the context of manufacturing SMEs. The results of NSBBO 

is compared with other methods in the literature in terms of the system 

unbalance of 10 problems with different FMS sizes. The results show that 

the NSBBO method is potential in achieving near-optimal, and in some 

cases optimal, solutions. Thus, it is proved that the proposed approach of 

BBO and non-dominated sorting procedure is general enough and can be 

applied to a variety of manufacturing enterprises for FMS. The simulation 

results were compared with performance indicators such as system 

unbalance, makespan and total flow time to confirm the reasonableness 

of the designed FMS. 

As an extension of this research, the proposed model can be considered 

with additional resources such as jigs/fixtures, material handling systems 

(robots, AGVs) and the constraints on the availability of resources. The 

sequencing and scheduling of the selected machines and operations will 

be suggested for more extension. Moreover, the parameters of processing 

time of operations and traveling time of machining parts can be addressed 

in the context of fuzzy numbers and gray numbers where there is existing 

uncertain information in the manufacturing environment. Besides, fuzzy 

resources and stochastic machine assignment problems will be considered 

as a direction for future research. Finally, one future possible area of this 

research is to develop the multi-agent based machine assignment, 

sequencing, scheduling, and integration system for exchanging 

information effectively in real manufacturing cells of SMEs. The 

continuation of extension for NSBBO to include the variation of migration 

rates should be taken note and compared with NSGA-II and SPEA-2 in 
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terms of performance indicators. Moreover, the constraint handling 

methods also combined with NSBBO to solve the constrained multi-

objective machine loading problems are interesting directions for future. 
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